sábado, 26 de mayo de 2012

Sistema de ecuaciones lineales


En matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (es decir, un sistema de ecuaciones en donde cada ecuación es de primer grado), definidas sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:

    \left \{
        \begin{array}{rcrcrcr}
             3 \,x_1 & + & 2\,x_2             & + &   \,x_3 & = & 1  \\
             2 \,x_1 & + & 2\,x_2             & + & 4 \,x_3 & = & -2 \\
             - \,x_1 & + & \frac{1}{2} \,x_2  & - &   \,x_3 & = & 0
        \end{array}
    \right .
El problema consiste en encontrar los valores desconocidos de las variables x1x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señalesanálisis estructural, estimación, predicción y más generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.
En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma normal como:

   \begin{matrix}
      a_{11}x_1 & + a_{12}x_2 & + \dots & + a_{1n}x_n & = b_1 \\
      a_{21}x_1 & + a_{22}x_2 & + \dots & + a_{2n}x_n & = b_2 \\
      \dots     & \dots       & \dots   & \dots       & \dots \\
      a_{m1}x_1 & + a_{m2}x_2 & + \dots & + a_{mn}x_n & = b_m
   \end{matrix}
Donde x_1,\dots,x_n\, son las incógnitas y los números a_{ij}\in\mathbb{K} son los coeficientes del sistema sobre el cuerpo \mathbb{K}\ [= \R, \mathbb{C}, \dots]. Es posible reescribir el sistema separando con coeficientes con notación matricial:
(1)
   \begin{bmatrix}
      a_{11} & a_{12} & \cdots & a_{1n} \\
      a_{21} & a_{22} & \cdots & a_{2n} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{m1} & a_{m2} & \cdots & a_{mn}
   \end{bmatrix} 
   \begin{bmatrix}
      x_1 \\
      x_2 \\
      \vdots \\
      x_n
   \end{bmatrix} =
   \begin{bmatrix}
      b_1 \\
      b_2 \\
      \vdots \\
      b_m
   \end{bmatrix}
Si representamos cada matriz con una única letra obtenemos:

   \mathbf{Ax} = \mathbf{b}
Donde A es una matriz m por nx es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea elcuerpo del que provengan los coeficientes.

Otros enlaces de Sistemas de Ecuaciones Lineales:

No hay comentarios:

Publicar un comentario